量子物理學(xué)
人氣:3291次發(fā)表時間:2013-01-04
量子概念是1900年普朗克首先提出的,到今天已經(jīng)一百多年了。期間,經(jīng)過玻爾、德布羅意、玻恩、海森柏、薛定諤、狄拉克、愛因斯坦等許多物理大師的創(chuàng)新努力,到20世紀(jì)30年代,初步建立了一套完整的量子力學(xué)理論。
量子世界
我們把量子物理學(xué)
量子物理學(xué)的建立
量子物理學(xué)是在20世紀(jì)初,物理學(xué)家們在研究微觀世界(原子、分子、原子核…)的結(jié)構(gòu)和運(yùn)動規(guī)律的過程中,逐步建立起來的。量子物理學(xué)的內(nèi)容
本書量子物理學(xué)創(chuàng)立者馬克斯·普朗克
量子物理學(xué)的價值
20世紀(jì)物理學(xué)的發(fā)展表明,量子物理是人們認(rèn)識和理解微觀世界的基礎(chǔ)。量子物理和相對論的成就使得物理學(xué)原子
量子力學(xué)
量子力學(xué)
量子力學(xué)是愛因斯坦
量子力學(xué)詮釋:霍金膜上的四維量子論
類似10維或11維的“弦論”=振動的弦、震蕩中的象弦一樣的微小物體。量子物理學(xué)及其發(fā)展簡史
量子力學(xué)的獨(dú)特地位
盡管量子力學(xué)是為描述遠(yuǎn)離我們的日常生活經(jīng)驗的抽象原子世界而創(chuàng)立的,但它對日常生活的影響無比巨大。沒有量子力學(xué)作為工具,就不可能有化學(xué)、生物、醫(yī)學(xué)以及其他每一個關(guān)鍵學(xué)科的引人入勝的進(jìn)展。沒有量子力學(xué)就沒有全球經(jīng)濟(jì)可言,因為作為量子力學(xué)的產(chǎn)物的電子學(xué)革命將我們帶入了計算機(jī)時代。同時,光子學(xué)的革命也將我們帶入信息時代。量子物理的杰作改變了我們的世界,科學(xué)革命為這個世界帶來了的福音,也帶來了潛在的威脅。量子物理實際上包含兩個方面
一個是原子層次的物質(zhì)理論:量子力學(xué),正是它我們才能理解和操縱物質(zhì)世界;另一個是量子場論,它在科學(xué)中起到一個完全不同的作用。舊量子論
從輻射問題引入量子
量子革命的導(dǎo)火線不是對物質(zhì)的研究,而是輻射問題。具體的挑戰(zhàn)是理解黑體(指入射的電磁波全部被吸收,既沒有反射,也沒有透射的物體)輻射的光譜??具^火的人都很熟悉這樣一種現(xiàn)象:熱的物體發(fā)光,越熱發(fā)出的光越明亮。光譜的范圍很廣,當(dāng)溫度升高時,光譜的峰值從紅線向黃線移動,然后又向藍(lán)線移動(在可見光范圍內(nèi)表現(xiàn)為主色調(diào)由紅變藍(lán))。物質(zhì)悖論
輻射難題促成了通往量子理論的第一步,物質(zhì)悖論則促成了第二步。眾所周知,原子包含正負(fù)兩種電荷的粒子,異號電荷相互吸引。根據(jù)電磁理論,正負(fù)電荷彼此將螺旋式的靠近,輻射出光譜范圍寬廣的光,直到原子坍塌為止。玻爾量子論誕生
接著,又是一個新秀尼爾斯·玻爾(NielsBohr)邁出了決定性的一步。1913年,玻爾提出了一個激進(jìn)的假設(shè):原子中的電子只能處于包含基態(tài)在內(nèi)的定態(tài)上,電子在兩個定態(tài)之間躍遷而改變它的能量,同時輻射出一定波長的光,光的波長取決于定態(tài)之間的能量差。結(jié)合已知的定律和這一離奇的假設(shè),玻爾掃清了原子穩(wěn)定性的問題。玻爾的理論充滿了矛盾,但是為氫原子光譜提供了定量的描述。他認(rèn)識到他的模型的成功之處和缺陷。憑借驚人的預(yù)見力,他聚集了一批物理學(xué)家創(chuàng)立了新的物理學(xué)。一代年輕的物理學(xué)家花了12年時間終于實現(xiàn)了他的夢想。量子力學(xué)史
一場科學(xué)革命
1923年路易·德布羅意(LouisdeBroglie)在他的博士論文中提出光的粒子行為與粒子的波動行為應(yīng)該是對應(yīng)存在的。他將粒子的波長和動量聯(lián)系起來:動量越大,波長越短。這是一個引人入勝的想法,但沒有人知道粒子的波動性意味著什么,也不知道它與原子結(jié)構(gòu)有何聯(lián)系。然而德布羅意的假設(shè)是一個重要的前奏,很多事情就要發(fā)生了。量子力學(xué)的基礎(chǔ)建立
1928年,革命結(jié)束,量子力學(xué)的基礎(chǔ)本質(zhì)上已經(jīng)建立好了。后來,AbrahamPais以軼事的方式記錄了這場以狂熱的節(jié)奏發(fā)生的革命。其中有一段是這樣的:1925年,SamuelGoudsmit和GeorgeUhlenbeck就提出了電子自旋的概念,玻爾對此深表懷疑。10月玻爾乘火車前往荷蘭的萊頓參加亨德里克·A·洛倫茲(HendrikA.Lorentz)的50歲生日慶典,泡利在德國的漢堡碰到玻爾并探詢玻爾對電子自旋可能性的看法;玻爾用他那著名的低調(diào)評價的語言回答說,自旋這一提議是“非常,非常有趣的”。后來,愛因斯坦和PaulEhrenfest在萊頓碰到了玻爾并討論了自旋。玻爾說明了自己的反對意見,但是愛因斯坦展示了自旋的一種方式并使玻爾成為自旋的支持者。在玻爾的返程中,遇到了更多的討論者。當(dāng)火車經(jīng)過德國的哥挺根時,海森堡和約當(dāng)接站并詢問他的意見,泡利也特意從漢堡格趕到柏林接站。玻爾告訴他們自旋的發(fā)現(xiàn)是一重大進(jìn)步。(按:看到歐洲科學(xué)家之間坦誠而熱烈的交流,我們會得到什么啟示嗎?)科學(xué)的淘金熱
量子力學(xué)的創(chuàng)建觸發(fā)了科學(xué)的淘金熱。早期的成果有:1927年海森堡得到了氦原子薛定諤方程的近似解,建立了原子結(jié)構(gòu)理論的基礎(chǔ);JohnSlater,DouglasRaynerHartree,和VladimirFock隨后又提出了原子結(jié)構(gòu)的一般計算技巧;FritzLondon和WalterHeitler解決了氫分子的結(jié)構(gòu),在此基礎(chǔ)上,LinusPauling建立了理論化學(xué);ArnoldSommerfeld和泡利建立了金屬電子理論的基礎(chǔ),F(xiàn)elixBloch創(chuàng)立了能帶結(jié)構(gòu)理論;海森堡解釋了鐵磁性的起因。1928年GeorgeGamow解釋了α放射性衰變的隨機(jī)本性之謎,他表明α衰變是由量子力學(xué)的隧道效應(yīng)引起的。隨后幾年中,HansBethe建立了核物理的基礎(chǔ)并解釋了恒星的能量來源。隨著這些進(jìn)展,原子物理、分子物理、固體物理和核物理進(jìn)入了現(xiàn)代物理的時代。量子力學(xué)要點
伴隨著這些進(jìn)展,圍繞量子力學(xué)的闡釋和正確性發(fā)生了許多爭論。玻爾和海森堡是倡導(dǎo)者的重要成員,他們信奉新理論,愛因斯坦和薛定諤則對新理論不滿意。波函數(shù)
系統(tǒng)的行為用薛定諤方程描述,方程的解稱為波函數(shù)。系統(tǒng)的完整信息用它的波函數(shù)表述,通過波函數(shù)可以計算任意可觀察量的可能值。在空間給定體積內(nèi)找到一個電子的概率正比于波函數(shù)幅值的平方,因此,粒子的位置分布在波函數(shù)所在的體積內(nèi)。粒子的動量依賴于波函數(shù)的斜率,波函數(shù)越陡,動量越大。斜率是變化的,因此動量也是分布的。這樣,有必要放棄位移和速度能確定到任意精度的經(jīng)典圖像,而采納一種模糊的概率圖像,這也是量子力學(xué)的核心。波的干涉
波相加還是相減取決于它們的相位,振幅同相時相加,反相時相減。當(dāng)波沿著幾條路徑從波源到達(dá)接收器,比如光的雙縫干涉,一般會產(chǎn)生干涉圖樣。粒子遵循波動方程,必有類似的行為,如電子衍射。至此,類推似乎是合理的,除非要考察波的本性。波通常認(rèn)為是媒質(zhì)中的一種擾動,然而量子力學(xué)中沒有媒質(zhì),從某中意義上說根本就沒有波,波函數(shù)本質(zhì)上只是我們對系統(tǒng)信息的一種陳述。對稱性和全同性
氦原子由兩個電子圍繞一個核運(yùn)動而構(gòu)成。氦原子的波函數(shù)描述了每一個電子的位置,然而沒有辦法區(qū)分哪個電子究竟是哪個電子,因此,電子交換后看不出體系有何變化,也就是說在給定位置找到電子的概率不變。由于概率依賴于波函數(shù)的幅值的平方,因而粒子交換后體系的波函數(shù)與原始波函數(shù)的關(guān)系只可能是下面的一種:要么與原波函數(shù)相同,要么改變符號,即乘以-1。到底取誰呢?爭議與混亂
量子力學(xué)爭論的焦點
量子力學(xué)意味著什么?波函數(shù)到底是什么?測量是什么意思?這些問題在早期都激烈爭論過。直到1930年,玻爾和他的同事或多或少地提出了量子力學(xué)的標(biāo)準(zhǔn)闡釋,即哥本哈根闡釋;其關(guān)鍵要點是通過玻爾的互補(bǔ)原理對物質(zhì)和事件進(jìn)行概率描述,調(diào)和物質(zhì)波粒二象性的矛盾。愛因斯坦不接受量子理論,他一直就量子力學(xué)的基本原理同玻爾爭論,直至1955年去世。二次革命
在20年代中期創(chuàng)立量子力學(xué)的狂熱年代里,也在進(jìn)行著另一場革命,量子物理的另一個分支——量子場論的基礎(chǔ)正在建立。不像量子力學(xué)的創(chuàng)立那樣如暴風(fēng)疾雨般一揮而就,量子場論的創(chuàng)立經(jīng)歷了一段曲折的歷史,一直延續(xù)到今天。盡管量子場論是困難的,但它的預(yù)測精度是所有物理學(xué)科中最為精確的,同時,它也為一些重要的理論領(lǐng)域的探索提供了范例。量子場論出現(xiàn)
40年代晚期,量子場論出現(xiàn)了新的進(jìn)展,理查德·費(fèi)曼(RichardFeynman),朱利安·施溫格(JulianSchwinger)和朝永振一郎(SinitiroTomonaga)提出了量子電動力學(xué)(縮寫為QED)。他們通過重整化的辦法回避無窮大量,其本質(zhì)是通過減掉一個無窮大量來得到有限的結(jié)果。由于方程復(fù)雜,無法找到精確解,所以通常用級數(shù)來得到近似解,不過級數(shù)項越來越難算。雖然級數(shù)項依次減小,但是總結(jié)果在某項后開始增大,以至于近似過程失敗。盡管存在這一危險,QED仍被列入物理學(xué)史上最成功的理論之一,用它預(yù)測電子和磁場的作用強(qiáng)度與實驗可靠值僅差2/1,000,000,000,000。對物質(zhì)終極本性的理解成為重大科研的焦點
今天,尋求對物質(zhì)終極本性的理解成為重大科研的焦點,使人不自覺地想起創(chuàng)造量子力學(xué)那段狂熱的奇跡般的日子,其成果的影響將更加深遠(yuǎn)?,F(xiàn)在必須努力尋求引力的量子描述,半個世紀(jì)的努力表明,QED的杰作——電磁場的量子化程序?qū)τ谝鍪?。問題是嚴(yán)重的,因為如果廣義相對論和量子力學(xué)都成立的話,它們對于同一事件必須提供本質(zhì)上相容的描述。在我們周圍世界中不會有任何矛盾,因為引力相對于電力來說是如此之弱以至于其量子效應(yīng)可以忽略,經(jīng)典描述足夠完美;但對于黑洞這樣引力非常強(qiáng)的體系,我們沒有可靠的辦法預(yù)測其量子行為。愛因斯坦——羅森“橋”
1935年愛因斯坦和納珍·羅森寫了一篇論文。在該論文中他們指出廣義相對論允許他們稱為“橋”,而現(xiàn)在稱為蟲洞的東西。愛因斯坦——羅森橋不能維持得足夠久,使得空間飛船來得及穿越:蟲洞會縮緊,而飛船撞到奇點上去。然而,有人提出,一個先進(jìn)的文明可能使蟲洞維持開放。人們可以把時空以其他方式卷曲,使它允許時間旅行。可以證明這需要一個負(fù)曲率的時空區(qū)域,如同一個馬鞍面。通常的物質(zhì)具有正能量密度,賦予時空以正曲率,如同一個球面。所以為了使時空卷曲成允許旅行到過去的樣子,人們需要負(fù)能量密度的物質(zhì)。量子物理學(xué)對中醫(yī)學(xué)的意義
哲學(xué)是從原則高度指導(dǎo)人們的思想和社會實踐的,量子物理學(xué)哲學(xué)觀點對中醫(yī)理論的理解與支持廣泛而深刻。
上一篇:卡西米爾效應(yīng)
下一篇:量子真空零點能與全息宇宙